On the Diffusion Coefficient: The Einstein Relation and Beyond

نویسنده

  • GORAN PESKIR
چکیده

We present a detailed derivation of the closed-form expression for the diffusion coefficient that was initially obtained by Einstein [4]. The present derivation does not make use of a fictitious force as did the original Einstein derivation, but instead concentrates directly on establishing a dynamic equilibrium between the forces of pressure and friction acting on a Brownian particle. This approach makes it easier to understand the true essence of the argument, and thus makes it simpler to apply the argument in a more general case or setting. We demonstrate this by deriving the equation of motion of a Brownian particle that is under the influence of an external force in the fluid with a non-constant temperature. This equation extends the well-known Smoluchowski approximation [24] to the case of non-constant temperature, and offers new insights into the Ludwig-Soret and Enskog-Chapman effects (providing also a scholar example explaining the need for a stochastic integral). The key point in the derivation is reached by applying the Einstein dynamic equilibrium argument together with the conservation of the number of particles law. We show that this approach leads directly to the Kolmogorov forward equation whenever the setting is Markovian. The same method can also be applied in the case of interacting Brownian particles satisfying the van der Waals equation. In this setting we first demonstrate that the presence of short-range repulsive forces between Brownian particles tends to increase the diffusion coefficient, and the presence of long-range attractive forces between Brownian particles tends to decrease it. The method of derivation then leads to a nonlinear partial differential equation which in the case of weak interaction reduces to the Fokker-Planck equation. One of the main aims of the present article is to demonstrate that the Einstein argument leads to a truly dynamical theory of diffusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECTIVE DIFFUSION AND EFFECTIVE DRAG COEFFICIENT OF A BROWNIAN PARTICLE IN A PERIODIC POTENTIAL∗ Dedicated to Professor Peter D. Lax on the occasion of his 85th birthday

We study the stochastic motion of a Brownian particle driven by a constant force over a static periodic potential. We show that both the effective diffusion and the effective drag coefficient are mathematically well-defined and we derive analytic expressions for these two quantities. We then investigate the asymptotic behaviors of the effective diffusion and the effective drag coefficient, resp...

متن کامل

Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.

The short- and long-time breakdown of the classical Stokes-Einstein relation for colloidal suspensions at arbitrary volume fractions is explained here by examining the role that confinement and attractive interactions play in the intra- and inter-cage dynamics executed by the colloidal particles. We show that the measured short-time diffusion coefficient is larger than the one predicted by the ...

متن کامل

Anomalous low temperature ambipolar diffusion and Einstein relation.

The regular Einstein relation, connecting the coefficient of ambipolar diffusion and the Dember field with mobilities, is generalized for the case of an interacting electron-hole plasma. The calculations are presented for a nondegenerate plasma injected by light into semiconductors of silicon and germanium type. The Debye-Huckel correlation and the Wigner-Seitz exchange terms are considered. Co...

متن کامل

Modelling the catalyst fragmentation pattern in relation to molecular properties and particle overheating in olefin polymerization

A two-dimensional single particle finite element model was used to examine the effects of particle fragmental pattern on the average molecular weights, polymerization rate and particle overheating in heterogeneous Ziegler-Natta olefin polymerization. A two-site catalyst kinetic mechanism was employed together with a dynamic two-dimensional molecular species in diffusion-reaction equation. The i...

متن کامل

Diffusion of a sphere in a dilute solution of polymer coils.

We calculate the short time and the long time diffusion coefficients of a spherical tracer particle in a polymer solution in the low density limit by solving the Smoluchowski equation for a two-particle system and applying a generalized Einstein relation (fluctuation dissipation theorem). The tracer particle as well as the polymer coils are idealized as hard spheres with a no-slip boundary cond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008